Skip to main navigation menu Skip to main content Skip to site footer

Special issue: Visual Politics

Vol. 6 No. 2 (2024): Special issue on methods in visual politics and protest: Deconstruction, reflexivity & femmix

Understanding climate-related visual storytelling on TikTok: A cross-national multimodal analysis

DOI
https://doi.org/10.33621/jdsr.v6i2.212
Submitted
May 17, 2023
Published
2024-05-24

Abstract

This cross-cultural study investigates the prevalence and impact of climate-related campaigns on TikTok, with a specific focus on climate-related visual storytelling in Indonesia, Japan, Pakistan, the Philippines, Thailand, the United Kingdom, and the United States. Computational methods are employed in the study to analyse a dataset of 7,564 videos, providing insights into prominent visual characteristics and regional variations. The findings underline the significance of cultural and political contexts in shaping climate storytelling on TikTok. Furthermore, this research explores the potential of computational visual data analysis in studying climate communication, demonstrating the integration of computer vision and topic modelling to examine visual styles and communicative functions in TikTok’s climate storytelling. The study enhances our understanding of climate communication on digital platforms and emphasizes the value of leveraging computational methods to gain meaningful cross-cultural insights into visual storytelling in the context of climate change.

References

  1. Abidin, C. (2021). Mapping internet celebrity on TikTok: Exploring attention economies and visibility labours. Cultural Science Journal, 12(1), 77-103. https://doi.org/10.5334/csci.140
  2. Abuzayed, A. & Al-Khalifa, H. (2021). BERT for Arabic Topic Modeling: An Experimental Study on BERTopic Technique. Procedia Computer Science, 189, 191–194. https://doi.org/10.1016/j.procs.2021.05.096
  3. Allgaier, J. (2019). Science and Environmental Communication on YouTube: Strategically Distorted Communications in Online Videos on Climate Change and Climate Engineering. Frontiers in Communication, 4. https://www.frontiersin.org/articles/10.3389/fcomm.2019.00036
  4. Althor, G., Watson, J. E. M., & Fuller, R. A. (2016). Global mismatch between greenhouse gas emissions and the burden of climate change. Scientific Reports, 6(1), Article 1. https://doi.org/10.1038/srep20281
  5. Arceneaux, P., Albishri, O., & Kiousis, S. (2022). How Candidates Influence Each Other in Electoral Politics: Intercandidate Agenda-Building in Florida’s 2018 Midterm Election. Journal of Political Marketing, 1(1), 1–24. https://doi.org/10.1080/15377857.2022.2040690
  6. Askanius, T. & Uldam, J. (2011). Online social media for radical politics: Climate change activism on YouTube. International Journal of Electronic Governance, 4(1–2), 69–84. https://doi.org/10.1504/IJEG.2011.041708
  7. Basch, C. H., Yalamanchili, B., & Fera, J. (2022). #Climate Change on TikTok: A Content Analysis of Videos. Journal of Community Health, 47(1), 163–167. https://doi.org/10.1007/s10900-021-01031-x
  8. Blicharska, M., Smithers, R. J., Kuchler, M., Agrawal, G. K., Gutiérrez, J. M., Hassanali, A., Huq, S., Koller, S. H., Marjit, S., Mshinda, H. M., Masjuki, H. H., Solomons, N. W., Staden, J. V., & Mikusi?ski, G. (2017). Steps to overcome the North–South divide in research relevant to climate change policy and practice. Nature Climate Change, 7(1), Article 1. https://doi.org/10.1038/nclimate3163
  9. Bonifazi, G., Cecchini, S., Corradini, E., Giuliani, L., Ursino, D., & Virgili, L. (2022). Investigating community evolutions in TikTok dangerous and non-dangerous challenges. Journal of Information Science, 01655515221116519.
  10. Bradski, G. (2000). The openCV library. Dr. Dobb’s Journal: Software Tools for the Professional Programmer, 25(11), 120-123.
  11. Brookes, G., & McEnery, T. (2019). The utility of topic modelling for discourse studies: A critical evaluation. Discourse Studies, 21(1), 3–21. https://doi.org/10.1177/1461445618814032
  12. Cervi, L., & Divon, T. (2023). Playful activism: Memetic performances of Palestinian resistance in TikTok# Challenges. Social Media + Society, 9(1), 20563051231157607.
  13. Chang, J., Gerrish, S., Wang, C., Boyd-graber, J., & Blei, D. (2009). Reading Tea Leaves: How Humans Interpret Topic Models. Advances in Neural Information Processing Systems, 22. Retrieved from https://proceedings.neurips.cc/paper/2009/hash/f92586a25bb3145facd64ab20fd554ff-Abstract.html
  14. Doyle, J. (2007). Picturing the Clima(c)tic: Greenpeace and the Representational Politics of Climate Change Communication. Science as Culture, 16(2), 129–150. https://doi.org/10.1080/09505430701368938
  15. Eckstein, D., Künzel, V., Schäfer, L., & Winges, M. (2020). GLOBAL CLIMATE RISK INDEX 2020. Retrieved from URL https://germanwatch.org/en/17307
  16. Egger, R., & Yu, J. (2022). A Topic Modeling Comparison Between LDA, NMF, Top2Vec, and BERTopic to Demystify Twitter Posts. Frontiers in Sociology, 7, 886498. https://doi.org/10.3389/fsoc.2022.886498
  17. Goodnow, T. (2020). Narrative theory: Visual storytelling. In: Josephson, S., Kelly, J., & Smith, K. (Eds.), Handbook of Visual Communication (2nd ed., pp. 265–274). New York: Routledge.
  18. Grootendorst, M. (2022). BERTopic: Neural topic modeling with a class-based TF-IDF procedure (arXiv:2203.05794). arXiv. https://doi.org/10.48550/arXiv.2203.05794
  19. Grundmann, R., & Scott, M. (2014). Disputed climate science in the media: Do countries matter? Public Understanding of Science, 23(2), 220–235. https://doi.org/10.1177/0963662512467732
  20. Hase, V., Mahl, D., Schäfer, M. S., & Keller, T. R. (2021). Climate change in news media across the globe: An automated analysis of issue attention and themes in climate change coverage in 10 countries (2006–2018). Global Environmental Change, 70, 102353. https://doi.org/10.1016/j.gloenvcha.2021.102353
  21. Hautea, S., Parks, P., Takahashi, B., & Zeng, J. (2021). Showing They Care (Or Don’t): Affective Publics and Ambivalent Climate Activism on TikTok. Social Media + Society, 7(2), 20563051211012344. https://doi.org/10.1177/20563051211012344
  22. Jaskulsky, L., & Besel, R. (2013). Words That (Don’t) Matter: An Exploratory Study of Four Climate Change Names in Environmental Discourse. Applied Environmental Education and Communication, 12(1), 38–45. https://doi.org/10.1080/1533015X.2013.795836
  23. Jiang, Y., Jin, X., & Deng, Q. (2022). Short video uprising: how# BlackLivesMatter content on TikTok challenges the protest paradigm. arXiv preprint arXiv:2206.099
  24. Kaye, DBV, Zeng, J., & Wikstrom, P. (2022). TikTok: Creativity and Culture in Short Video. Cambridge: Polity Press.
  25. Lu, Y., & Shen, C. (2023). Unpacking Multimodal Fact-Checking: Features and Engagement of Fact-Checking Videos on Chinese TikTok (Douyin). Social Media+ Society, 9(1), 20563051221150406.
  26. Mahl, D., von Nordheim, G., & Guenther, L. (2023). Noise pollution: A multi-step approach to assessing the consequences of (not) validating search terms on automated content analyses. Digital Journalism, 11(2), 298-320.
  27. Maier, D., Waldherr, A., Miltner, P., Wiedemann, G., Niekler, A., Keinert, A., Pfetsch, B., Heyer, G., Reber, U., Häussler, T., Schmid-Petri, H., & Adam, S. (2018). Applying LDA Topic Modeling in Communication Research: Toward a Valid and Reliable Methodology. Communication Methods and Measures, 12(2–3), 93–118. https://doi.org/10.1080/19312458.2018.1430754
  28. McIver, G. (2016). Art history for filmmakers: The art of visual storytelling. Bloomsbury Publishing.
  29. Molder, A. L., Lakind, A., Clemmons, Z. E., & Chen, K. (2022). Framing the Global Youth Climate Movement: A Qualitative Content Analysis of Greta Thunberg’s Moral, Hopeful, and Motivational Framing on Instagram. The International Journal of Press/Politics, 27(3), 668–695. https://doi.org/10.1177/19401612211055691
  30. Mooseder, A., Brantner, C., Zamith, R., & Pfeffer, J. (2023). (Social) Media Logics and Visualizing Climate Change: 10 Years of #climatechange Images on Twitter. Social Media + Society, 9(1), 20563051231164310. https://doi.org/10.1177/20563051231164310
  31. Newman, N., Fletcher, R., Eddy, K., Robertson, C. T., & Nielsen, R. K. (2023). Digital News Report 2023. https://reutersinstitute.politics.ox.ac.uk/sites/default/files/2023-06/Digital_News_Report_2023.pdf
  32. Nguyen, D. Q., Vu, T., & Nguyen, A. T. (2020). BERTweet: A pre-trained language model for English Tweets (arXiv:2005.10200). arXiv. https://doi.org/10.48550/arXiv.2005.10200
  33. O’Neill, S. & Nicholson-Cole, S. (2009). “Fear won’t do it” promoting positive engagement with climate change through visual and iconic representations. Science Communication, 30(3), 355-379.
  34. O’Neill, S. (2013). Image matters: Climate change imagery in US, UK and Australian newspapers. Geoforum, 49(1)|: 10–19. https://doi.org/10.1016/j.geoforum.2013.04.030
  35. O’Neill, S. (2017). Engaging with Climate Change Imagery. In Oxford Research Encyclopedia of Climate Science. https://doi.org/10.1093/acrefore/9780190228620.013.371
  36. O’Neill, S. (2020). More than meets the eye: A longitudinal analysis of climate change imagery in the print media. Climatic Change, 163(1), 9–26. https://doi.org/10.1007/s10584-019-02504-8
  37. O’Neill, S. J., & Smith, N. (2014). Climate change and visual imagery. WIREs Climate Change, 5(1), 73–87. https://doi.org/10.1002/wcc.249
  38. Pearce, W., & De Gaetano, C. (2021). Google Images, climate change, and the disappearance of humans. Diseña, (19), 3-3.
  39. Pearce, W., Niederer, S., Özkula, S. M., & Sánchez Querubín, N. (2019). The social media life of climate change: Platforms, publics, and future imaginaries. WIREs Climate Change, 10(2), e569. https://doi.org/10.1002/wcc.569
  40. Pimenta, S., & Poovaiah, R. (2010). On defining visual narratives. Design Thoughts, 3, 25-46.
  41. Pramana, P. D., Utari, P., & Naini, A. M. I. (2021). Symbolic convergence of #ClimateCrisis: A content analysis of Greenpeace Indonesia campaign on Instagram. IOP Conference Series: Earth and Environmental Science, 724(1), 012101. https://doi.org/10.1088/1755-1315/724/1/012101
  42. Qi, P., Bu, Y., Cao, J., Ji, W., Shui, R., Xiao, J., ... & Chua, T. S. (2022). FakeSV: A Multimodal Benchmark with Rich Social Context for Fake News Detection on Short Video Platforms. arXiv preprint arXiv:2211.10973.
  43. Reber, U. (2019). Overcoming Language Barriers: Assessing the Potential of Machine Translation and Topic Modeling for the Comparative Analysis of Multilingual Text Corpora. Communication Methods and Measures, 13(2), 102–125. https://doi.org/10.1080/19312458.2018.1555798
  44. Richardson, L. (2007). Beautiful Soup Documentation.
  45. Schäfer, M. S., & Painter, J. (2021). Climate journalism in a changing media ecosystem: Assessing the production of climate change-related news around the world. WIREs Climate Change, 12(1), e675. https://doi.org/10.1002/wcc.675
  46. Schäfer, M. S., & Schlichting, I. (2014). Media Representations of Climate Change: A Meta-Analysis of the Research Field. Environmental Communication-a Journal of Nature and Culture. https://doi.org/10.1080/17524032.2014.914050
  47. Schäfer, M. S. (2020). Introduction to visualizing climate change. In D. C. Holmes & L. M. Richardson (Eds.), Research Handbook on Communicating Climate Change (pp. 127–130). Cheltenham, UK: Edward Elgar Publishing.Schmidt,
  48. Song, Y., Huang, Z., Schuldt, J. P., & Yuan, Y. C. (2022). National prisms of a global phenomenon: A comparative study of press coverage of climate change in the US, UK and China. Journalism, 23(10), 2208-2229. https://doi.org/10.1177/1464884921989124
  49. Surabhi, S., Shah, B., Washington, P., Mutlu, O. C., Leblanc, E., Mohite, P., ... & Wall, D. P. (2022). TikTok for good: Creating a diverse emotion expression database. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 2496-2506).
  50. TikTok. (2023). Research API. https://developers.tiktok.com/products/research-api/
  51. UNFCC (1997), Kyoto Protocol to the United Nations Framework Convention on Climate Change, FCCC/CP/L.7/ Add.1, Kyoto.
  52. Vu, H. T., Liu, Y., & Tran, D. V. (2019). Nationalizing a global phenomenon: A study of how the press in 45 countries and territories portrays climate change. Global Environmental Change, 58, 101942. https://doi.org/10.1016/j.gloenvcha.2019.101942
  53. Wang, S., Corner, A., Chapman, D., & Markowitz, E. (2018). Public engagement with climate imagery in a changing digital landscape. WIREs Climate Change, 9(2), e509. https://doi.org/10.1002/wcc.509
  54. Wozniak, A., Lück, J., & Wessler, H. (2015). Frames, Stories, and Images: The Advantages of a Multimodal Approach in Comparative Media Content Research on Climate Change. Environmental Communication, 9(4), 469–490. https://doi.org/10.1080/17524032.2014.981559
  55. Yusoff, K. (2010). Biopolitical economies and the political aesthetics of climate change. Theory, Culture and Society, 27(2-3), 73-99.
  56. Y?lmaz, R., & Ci?erci, F. M. (2019). A brief history of storytelling: From primitive dance to digital narration. In R. Y?lmaz, M. N. Erdem, & F. Resulo?lu (Eds.), Handbook of Research on Transmedia Storytelling and Narrative Strategies (pp. 1-14). Hershey, PA: IGI Global.
  57. Yusoff, K. (2010). Biopolitical economies and the political aesthetics of climate change. Theory, Culture & Society, 27(2-3), 73-99.
  58. Zeng, J. & Abidin, C. (2021). ‘# OkBoomer, time to meet the Zoomers’: Studying the memefication of intergenerational politics on TikTok. Information, Communication and Society, 24(16), 2459-2481. https://doi.org/10.1080/1369118X.2021.1961007
  59. Zeng, J., Schäfer, M.S., & Allgaier, J. (2021). Reposting “till Albert Einstein is TikTok famous”: The Memetic Construction of Science on TikTok. International Journal of Communication. https://ijoc.org/index.php/ijoc/article/view/14547
  60. Zeng, J. (2023). # LearnOnTikTok Serendipitously,# LearnOnTikTok Seriously. JCMS: Journal of Cinema and Media Studies, 62(4), 174-180. https://doi.org/10.1353/cj.2023.a904634
  61. Zulli, D. & Zulli, D. J. (2022). Extending the Internet meme: Conceptualizing technological mimesis and imitation publics on the TikTok platform. New Media & Society, 24(8), 1872-1890. https://doi.org/10.1177/1461444820983603