Skip to main navigation menu Skip to main content Skip to site footer

Special Issue on Methods in Visual Politics and Protest

Vol. 6 No. 1 (2024): Special issue: Methods in Visual Politics and Protest: Mixed Methods, Data Curation & Anti-Publics

Analyzing Radical Visuals at Scale: How Far-Right Groups Mobilize on TikTok

DOI
https://doi.org/10.33621/jdsr.v6i1.200
Submitted
May 15, 2023
Published
2024-03-06

Abstract

Research examining radical visual communication and its manifestation on the trending platform TikTok is limited. This paper presents a novel methodological framework for studying mobilization strategies of far-right groups on TikTok, employing a mixed-method approach that combines manual annotation, unsupervised image classification, and named-entity recognition to analyze the dynamics of radical visuals at scale. Differentiating between internal and external mobilization, we use popularity and engagement cues to investigate far-right mobilization efforts on TikTok within and outside their community. Our findings shed light on the effectiveness of unsupervised image classification when utilized within a broader mixed-method framework, as each observed far-right group employs unique platform characteristics. While Conspiracists flourish in terms of overall popularity and internal mobilization, nationalist and protest content succeeds by using a variety of persuasive visual content to attract and engage external audiences. The study contributes to existing literature by bridging the gap between visual political communication at scale and radicalization research. By offering insights into mobilization strategies of far-right groups, our study provides a foundation for policymakers, researchers, and online platforms to develop proactive measures to address the risks associated with the dissemination of extremist ideologies on social media.

References

  1. Albertazzi, D., & Bonansinga, D. (2023). Beyond anger: The populist radical right on TikTok. Journal of Contemporary European Studies, 1–17. https://doi.org/10.1080/14782804.2022.2163380
  2. Arief, R., Mutiara, A., Kusuma, T., & Hustinawaty. (2018). Automated extraction of large scale scanned document images using Google Vision OCR in Apache Hadoop environment. International Journal of Advanced Computer Science and Applications, 9, 112–116. https://doi.org/10.14569/IJACSA.2018.091117
  3. Ayanian, A. H., Böckler, N., Doosje, B., & Zick, A. (2019). Processes of Radicalization and Polarization in the Context of Transnational Islamist Terrorism. International Journal of Conflict and Violence, 1–6. https://doi.org/10.4119/IJCV-3098
  4. Baker, S. A. (2022). Alt. Health Influencers: How wellness culture and web culture have been weaponised to promote conspiracy theories and far-right extremism during the COVID-19 pandemic. European Journal of Cultural Studies, 25 (1), 3–24. https://doi.org/10.1177/13675494211062623
  5. Bennett, W. L., & Segerberg, A. (2012). THE LOGIC OF CONNECTIVE ACTION: Digital media and the personalization of contentious politics. Information, Communication & Society, 15 (5), 739–768. https://doi.org/10.1080/1369118X.2012.670661
  6. Boucher, V. (2022). Down the TikTok Rabbit Hole: Testing the TikTok Algorithm’s Contribution to Right Wing Extremist Radicalization (thesis). Retrieved May 2, 2023, from https://qspace.library.queensu.ca/handle/1974/30197
  7. Boulianne, S., & Lee, S. (2022). Conspiracy Beliefs, Misinformation, Social Media Platforms, and Protest Participation. Media and Communication, 10 (4), 30–41. https://doi.org/10.17645/mac.v10i4.5667
  8. Brown, K., Mondon, A., & Winter, A. (2023). The far right, the mainstream and mainstreaming: Towards a heuristic framework. Journal of Political Ideologies, 28(2), 162-179. https://doi.org/10.1080/13569317.2021.1949829
  9. Caiani, M. (2022). Between real and virtual: Strategies of mobilisation of the radical right in Eastern Europe. East European Politics, 38 (3), 331–357. https://doi.org/10.1080/21599165.2021.1955676
  10. Caiani, M., Porta, D. d., & Wagemann, C. (2012). Mobilizing on the Extreme Right: Germany, Italy, and the United States. Oxford University Press.
  11. Carter, E. (2018). Right-wing extremism/radicalism: Reconstructing the concept. Journal of Political Ideologies, 23 (2), 157–182. https://doi.org/10.1080/13569317.2018.1451227
  12. Castelli Gattinara, P., Froio, C., & Pirro, A. L. P. (2022). Far-right protest mobilisation in Europe: Grievances, opportunities and resources. European Journal of Political Research, 61 (4), 1019–1041. https://doi.org/10.1111/1475-6765.12484
  13. Cervi, L., & Divon, T. (2023). Playful Activism: Memetic Performances of Palestinian Resistance in TikTok #Challenges. Social Media + Society, 9 (1), 1–13. https://doi.org/10.1177/20563051231157607
  14. Cervi, L., Tejedor, S., & Marín Lladó, C. (2021). TikTok and the new language of political communication. Cultura, Lenguaje y Representación, 26, 267–287. https://doi.org/10.1177/20563051231157607
  15. Chapelan, A. (2021). “Swallowing the red pill”: The coronavirus pandemic and the political imaginary of stigmatized knowledge in the discourse of the far-right. Journal of Transatlantic Studies, 19 (3), 282–312. https://doi.org/10.1057/s42738-021-00073-2
  16. Chen, S.-H., & Chen, Y.-H. (2017). A Content-Based Image Retrieval Method Based on the Google Cloud Vision API and WordNet. In N. T. Nguyen, S. Tojo, L. M. Nguyen, & B. Trawi?ski (Eds.), Intelligent Information and Database Systems (pp. 651–662). Springer International Publishing. https://doi.org/10.1007/978-3-319-54472-4_61
  17. Clever, L., Schatto-Eckrodt, T., Clever, N. C., & Frischlich, L. (2023). Behind Blue Skies: A Multimodal Automated Content Analysis of Islamic Extremist Propaganda on Instagram. Social Media + Society, 9 (1), 1–14. https://doi.org/10.1177/20563051221150404
  18. Collins, L. M., & Lanza, S. T. (2009). Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences. John Wiley & Sons.
  19. Dinno, A. (2015). Nonparametric Pairwise Multiple Comparisons in Independent Groups using Dunn’s Test. The Stata Journal, 15 (1), 292–300. https://doi.org/10.1177/1536867X1501500117
  20. Ekman, M. (2022). The great replacement: Strategic mainstreaming of far-right conspiracy claims. Convergence: The International Journal of Research into New Media Technologies, 28 (4), 1127–1143. https://doi.org/10.1177/13548565221091983
  21. Fuchs, M. (2023). Deutsche Politik auf Tik Tok. Retrieved May 1, 2023, from https://docs.google.com/spreadsheets/d/13yIKz_RdUe1IAExjJKiPlgzkD- T0ZXRbEnU2nIkDJFU/edit#gid=0
  22. Gao, Y., Liu, F., & Gao, L. (2023). Echo chamber effects on short video platforms. Scientific Reports, 13 (6282), 1–17. https://doi.org/10.1038/s41598-023-33370-1
  23. Goodwin, A., Joseff, K., Riedl, M. J., Lukito, J., & Woolley, S. (2023). Political Relational Influencers: The Mobilization of Social Media Influencers in the Political Arena [Number: 0]. International Journal of Communication, 17, 1613–1633. Retrieved May 4, 2023, from https://ijoc.org/index.php/ijoc/article/view/18987
  24. Grandinetti, J., & Bruinsma, J. (2022). The Affective Algorithms of Conspiracy TikTok. Journal of Broadcasting & Electronic Media, 1–20. https://doi.org/10.1080/08838151.2022.2140806
  25. Heiss, R., Schmuck, D., & Matthes, J. (2019). What drives interaction in political actors’ Facebook posts? Profile and content predictors of user engagement and political actors’ reactions. Information, Communication & Society, 22 (10), 1497–1513. https://doi.org/10.1080/1369118X.2018.1445273
  26. Hosseini, H., Xiao, B., & Poovendran, R. (2017). Google’s Cloud Vision API is Not Robust to Noise. 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), 101–105. https://doi.org/10.1109/ICMLA.2017.0-172
  27. Hunger, S., Hutter, S., & Kanol, E. (2023). The mobilisation potential of anti-containment protests in Germany. West European Politics, 46 (4), 812–840. https://doi.org/10.1080/01402382.2023.2166728
  28. Hutter, S., Kanol, E., Gonzatti, D. S., Schürmann, L., Völker, T., & Koopmans, R. (2023). Protest and Radicalization. In U. Kemmesies, P. Wetzels, B. Austin, C. Büscher, A. Dessecker, & S. Hutter (Eds.), MOTRA-Monitor 2022 (pp. 110-135). https://doi.org/10.53168/ISBN.978-3-9818469-6-6_2023_MOTRA
  29. Karnowski, V. (2017). Latent Class Analysis. In J. Matthes, C. S. Davis, & R. F. Potter (Eds.), The International Encyclopedia of Communication Research Methods (1st ed., pp. 1–10). Wiley. https://doi.org/10.1002/9781118901731.iecrm0130
  30. Lin, Y., Lv, F., Zhu, S., Yang, M., Cour, T., Yu, K., Cao, L., & Huang, T. (2011). Large-scale image classification: Fast feature extraction and SVM training. CVPR 2011, 1689–1696. https://doi.org/10.1109/CVPR.2011.5995477
  31. Little, O., & Richards, A. (2021). TikTok’s algorithm leads users from transphobic videos to far-right rabbit holes. Retrieved May 3, 2023, from https://www.mediamatters.org/tiktok/tiktoks-algorithm-leads-users-transphobic- videos-far-right-rabbit-holes
  32. Macafee, T. (2013). Some of these things are not like the others: Examining motivations and political predispositions among political Facebook activity. Computers in Human Behavior, 29 (6), 2766–2775. https://doi.org/10.1016/j.chb.2013.07.019
  33. Marengo, D., Settanni, M., & Montag, C. (2022). Dataset on individual differences in self-reported personality and inferred emotional expression in profile pictures of Italian Facebook users. Data in Brief, 41, 10–10. https://doi.org/10.1016/j.dib.2022.107899
  34. Medina Serrano, J. C., Papakyriakopoulos, O., & Hegelich, S. (2020). Dancing to the Partisan Beat: A First Analysis of Political Communication on TikTok. 12th ACM Conference on Web Science, 257–266. https://doi.org/10.1145/3394231.3397916
  35. Mitts, T., Phillips, G., & Walter, B. F. (2022). Studying the Impact of ISIS Propaganda Campaigns. The Journal of Politics, 84 (2), 1220–1225. https://doi.org/10.1086/716281
  36. Mudde, C. (2000). The ideology of the extreme right. Manchester University Press.
  37. Newman, N. (2022). How publishers are learning to create and distribute news on TikTok / Reuters Institute for the Study of Journalism (tech. rep.). Reuters Institute. https://reutersinstitute.politics.ox.ac.uk/how-publishers-are-learning-create-and- distribute-news-tiktok
  38. O’Callaghan, D., Greene, D., Conway, M., Carthy, J., & Cunningham, P. (2015). Down the (White) Rabbit Hole: The Extreme Right and Online Recommender Systems. Social Science Computer Review, 33 (4), 459–478. https://doi.org/10.1177/0894439314555329
  39. O’Connor, C. (2021). Hatescape: An In-Depth Analysis of Extremism and Hate Speech on TikTok (tech. rep. No. 24). Institute for Stategic Dialogue.
  40. Omena, J. J., Elena, P., Gobbo, B., & Jason, C. (2021). The Potentials of Google Vision API-based Networks to Study Natively Digital Images. Diseña, 19 (1), 1–25. https://doi.org/10.7764/disena.19.Article.1
  41. OpenAI. (2023). GPT-4 Technical Report. https://doi.org/10.48550/arXiv.2303.08774
  42. Ostertagová, E., Ostertag, O., & Ková?, J. (2014). Methodology and Application of the Kruskal-Wallis Test. Applied Mechanics and Materials, 611, 115–120. https://doi.org/10.4028/www.scientific.net/AMM.611.115
  43. Peng, Y. (2021). What Makes Politicians’ Instagram Posts Popular? Analyzing Social Media Strategies of Candidates and Office Holders with Computer Vision. The International Journal of Press/Politics, 26 (1), 143–166. https://doi.org/10.1177/1940161220964769
  44. Pirro, A. L. P. (2023). Far right: The significance of an umbrella concept. Nations and Nationalism, 29 (1), 101–112. https://doi.org/10.1111/nana.12860
  45. Pirro, A. L. P., & Gattinara, P. C. (2018). Movement Parties of the Far Right: The Organization and Strategies of Nativist Collective Actors. Mobilization: An International Quarterly, 23 (3), 367–383. https://doi.org/10.17813/1086-671X-23-3-367
  46. Pre:Bunk. (2023). Rechtsextremismus und TikTok: Wie geht die Mobilisierung? Retrieved April 28, 2023, from https://www.belltower.news/rechtsextremismus-und-tiktok-teil-2-mobilisierung-148805/teil-2-mobilisierung-148805/
  47. Rauchfleisch, A., & Kaiser, J. (2021). Deplatforming the Far-right: An Analysis of YouTube and BitChute. SSRN Electronic Journal, 1–28. https://doi.org/10.2139/ssrn.3867818
  48. Rogers, R. (2020). Deplatforming: Following extreme Internet celebrities to Telegram and alternative social media. European Journal of Communication, 35 (3), 213–229. https://doi.org/10.1177/0267323120922066
  49. Rosenstone, S. J., & Hansen, J. M. (1996). Mobilization, participation, and democracy in America. Pearson Education. Retrieved October 9, 2023, from https://cir.nii.ac.jp/crid/1130000796057872128
  50. Rothut, S., Schulze, H., Hohner, J., & Rieger, D. (2023). Ambassadors of ideology: A conceptualization and computational investigation of far-right influencers, their networking structures, and communication practices. New Media & Society, 146144482311644. https://doi.org/10.1177/14614448231164409
  51. Röchert, D., Weitzel, M., & Ross, B. (2020). The homogeneity of right-wing populist and radical content in YouTube recommendations. In International Conference on Social Media and Society (pp. 245-254). https://doi.org/10.1145/3400806.3400835
  52. Schmid, A. (2013). Radicalisation, De-Radicalisation, Counter-Radicalisation: A Conceptual Discussion and Literature Review. Terrorism and Counter-Terrorism Studies, 1–91. https://doi.org/10.19165/2013.1.02
  53. Schmid, U. K., Kümpel, A. S., & Rieger, D. (2022). How social media users perceive different forms of online hate speech: A qualitative multi-method study. New Media & Society, 0 (0), 1–19. https://doi.org/10.1177/14614448221091185
  54. Schulze, H., Hohner, J., Greipl, S., Girgnhuber, M., Desta, I., & Rieger, D. (2022). Far-right conspiracy groups on fringe platforms: A longitudinal analysis of radicalization dynamics on Telegram. Convergence: The International Journal of Research into New Media Technologies, 28 (4), 1103–1126. https://doi.org/10.1177/13548565221104977
  55. Schwemmer, C., Knight, C., Bello-Pardo, E. D., Oklobdzija, S., Schoonvelde, M., & Lockhart, J. W. (2020). Diagnosing Gender Bias in Image Recognition Systems. Socius: Sociological Research for a Dynamic World, 6, 1–17. https://doi.org/10.1177/2378023120967171
  56. Schwemmer, C., Unger, S., & Heiberger, R. (2023). Automated image analysis for studying online behaviour. Research Handbook on Digital Sociology. Edward Elgar Publishing.
  57. Stickings, T. (2021). ’Friendly face of National Socialism’: Leaked texts damage German far-right candidate. Retrieved April 27, 2023, from https://www.thenationalnews.com/world/europe/2021/08/03/friendly-face-of- national-socialism-leaked-texts-damage-german-far-right-candidate/
  58. Tanoli, I., Pais, S., Cordeiro, J., & Jamil, M. L. (2022). Detection of Radicalisation and Extremism Online: A Survey (preprint). In Review. https://doi.org/10.21203/rs.3.rs-1185415/v1
  59. Wang, M.-H., Chang, W.-Y., Kuo, K.-H., & Tsai, K.-Y. (2022). Analyzing Image-based Political Propaganda in Referendum Campaigns: From Elements to Strategies. https://doi.org/10.48550/arXiv.2205.13154
  60. Weimann, G., & Masri, N. (2020). Research Note: Spreading Hate on TikTok. Studies in Conflict & Terrorism, 1–14. https://doi.org/10.1080/1057610X.2020.1780027
  61. Weimann, G., & Masri, N. (2021). TikTok’s Spiral of Antisemitism. Journalism and Media, 2 (4), 697–708. https://doi.org/10.3390/journalmedia2040041
  62. Weller, B. E., Bowen, N. K., & Faubert, S. J. (2020). Latent Class Analysis: A Guide to Best Practice. Journal of Black Psychology, 46 (4), 287–311. https://doi.org/10.1177/0095798420930932
  63. Williams, N. W., Casas, A., & Wilkerson, J. D. (2020). Images as Data for Social Science Research: An Introduction to Convolutional Neural Nets for Image Classification. Elements in Quantitative and Computational Methods for the Social Sciences, 1–21. https://doi.org/10.1017/9781108860741
  64. Xi, N., Ma, D., Liou, M., Steinert-Threlkeld, Z. C., Anastasopoulos, J., & Joo, J. (2020). Understanding the Political Ideology of Legislators from Social Media Images. Proceedings of the International AAAI Conference on Web and Social Media, 14, 726–737. https://doi.org/10.1609/icwsm.v14i1.7338
  65. Zehring, M., & Domahidi, E. (2023). German Corona Protest Mobilizers on Telegram and Their Relations to the Far Right: A Network and Topic Analysis [Publisher: SAGE Publications Ltd]. Social Media + Society, 9 (1), 20563051231155106. https://doi.org/10.1177/20563051231155106
  66. Zeng, J., & Kaye, D. B. V. (2022). From content moderation to visibility moderation : A case study of platform governance on TikTok. Policy & Internet, 14 (1), 79–95. https://doi.org/10.1002/poi3.287
  67. Zulli, D., & Zulli, D. J. (2022). Extending the Internet meme: Conceptualizing technological mimesis and imitation publics on the TikTok platform. New Media & Society, 24 (8), 1872–1890. https://doi.org/10.1177/1461444820983603