Skip to main navigation menu Skip to main content Skip to site footer


Vol. 3 No. 2 (2021)

The Network Life of Non-biomedical Knowledge: Mapping Vietnamese Traditional Medicine Discourses on Facebook

April 15, 2021


Traditional medicine is hugely popular throughout Southeast Asia and other parts of the world. The development of the internet and online social networks in these contexts has enabled a significant proliferation of non-biomedical knowledge and practices via platforms such as Facebook. People use Facebook to advocate for non- biomedical alternatives to unaffordable biomedicine, share family medical recipes, discuss medicinal properties of indigenous plants, buy and sell these plants, and even crowdsource disease diagnoses. This paper examines the network characteristics of, and discourses present within, three popular Vietnamese non-biomedical knowledge Facebook sites over a period of five years. These large-scale datasets are studied using social network analysis and generative statistical models for topic analysis (Latent Dirichlet allocation). Forty-nine unique topics were quantitatively identified and qualitatively interpreted. Among these topics, themes of religion and philanthropy, critical discussions of traditional medicine, and negotiations involving overseas Vietnamese were particularly notable. Although non-biomedical networks on Facebook are growing both in terms of scale and popularity, sub-network comment activities within these networks exhibit ‘small world’ characteristics. This suggests that social media seem to be replicating existing social dynamics that historically enable the maintenance of traditional forms of medical knowledge, rather than transforming them here.


  1. Albright, J. (2018). The Graph API: Key Points in the Facebook and Cambridge Analytica Debacle. Medium. Available at
  2. Arun, R., Suresh, V., Madhavan, C. V., & Murthy, M. N. (2010). On finding the natural number of topics with latent dirichlet allocation: Some observations. In Pacific-Asia conference on knowledge discovery and data mining (pp. 391-402). Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-642-13657-3_43
  3. Blei, D. M. (2012). Surveying a suite of algorithms that offer a solution to managing large document archives. Communication of the ACM, 55(4), 77-84. DOI: 10.1145/2133806.2133826
  4. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of machine Learning research, 3, 993-1022.
  5. Blei, D.M., Mcauliffe, J. (2007). Supervised topic models. Neural Information Processing Systems Proceedings. 121-128. DOI: 10.5555/2981562.2981578
  6. Caci, B., Cardaci, M., & Tabacchi, M. E. (2012). Facebook as a small world: a topological hypothesis. Social Network Analysis and Mining, 2(2), 163-167. DOI: 10.1007/s13278-011-0042-8
  7. Cao, J., Xia, T., Li, J., Zhang, Y., & Tang, S. (2009). A density-based method for adaptive LDA model selection. Neurocomputing, 72(7-9), 1775-1781. DOI: 10.1016/j.neucom.2008.06.011
  8. Castells, M. (1996). The rise of the network society. Malden, Mass, Blackwell Publishers. DOI: 10.1002/9781444319514
  9. Castells, M. (1997). Power of identity: The information age: Economy, society, and culture. Blackwell Publishers. DOI: 1002/9781444318234
  10. Castells, M. (1998). End of Millennium: The Information Age: Economy, Society and Culture. Oxford and Maiden: Blackwell Publishers.
  11. Catanese, S. A., De Meo, P., Ferrara, E., Fiumara, G., & Provetti, A. (2011, May). Crawling facebook for social network analysis purposes. In Proceedings of the international conference on web intelligence, mining and semantics. pp. 1-8. DOI: 10.1145/1988688.1988749
  12. Craig, D. (2002). Familiar medicine: Everyday health knowledge and practice in today's Vietnam. University of Hawaii Press. USA. DOI: 10.1017/S0021911804001500
  13. Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research. InterJournal, Complex Systems, 1695(5), 1-9.
  14. DiMaggio, P. (2015). Adapting computational text analysis to social science (and vice versa). Big Data & Society, 2(2), 1-5. DOI: 10.1177/2053951715602908
  15. Epskamp, S., Costantini, G., Haslbeck, J., Cramer, A. O., Waldorp, L. J., Schmittmann, V. D., & Borsboom, D. (2019). Package ‘qgraph’. Available at
  16. Feather, J., 2013. The information society: A study of continuity and change. 6th edition. Facet publishing. London, UK. DOI: 10.1108/00220410510632121
  17. Gerlach, M., Peixoto, T. P., & Altmann, E. G. (2018). A network approach to topic models. Science advances, 4(7), eaaq1360. DOI: 10.1126/sciadv.aaq1360
  18. Graham, T. & Ackland, R. (2016). SocialMediaLab: Tools for collecting social media data and generating networks for analysis. CRAN (The Comprehensive R Archive Network). Retrieved from
  19. Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National academy of Sciences, 101(suppl 1), 5228-5235. DOI: 10.1073/pnas.0307752101
  20. Grün, B. & Hornik, K. (2011). topicmodels: An R package for fitting topic models. Journal of Statistical Software, 40(13), 1-30. DOI: 10.18637/jss.v040.i13
  21. Hether, H. J., Murphy, S. T., & Valente, T. W. (2016). A social network analysis of supportive interactions on prenatal sites. Digital health, 2, pp. 1-12. DOI: 10.1177/2055207616628700
  22. Hoang, T. A. (2015). Modeling user interest and community interest in microbloggings: An integrated approach. In Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp. 708-721). Springer, Cham. DOI: 10.1007/978-3-319-18038-0_55
  23. Hou-Liu, J. (2018). Benchmarking and Improving Recovery of Number of Topics in Latent Dirichlet Allocation Models. Available at
  24. Humphries, M. D., & Gurney, K. (2008). Network ‘small-world-ness’: a quantitative method for determining canonical network equivalence. PLoS One, 3(4), e0002051. DOI: 10.1371/journal.pone.0002051
  25. Kemp, S., 2019a, Digital 2019: Global Digital Overview, DataReportal, viewed 12 December 019 <>
  26. Kemp, S., 2019b, Digital 2019: Vietnam, DataReportal, viewed 12 December 2019 < <>
  27. Latour, B. (2005). Reassembling the social: An introduction to actor-network-theory: Oxford University Press. UK.
  28. Law, J., & Mol, A. (1995). Notes on materiality and sociality. The sociological review, 43(2), 274-294. DOI: 10.1111/j.1467-954X.1995.tb00604.x
  29. Liebeskind, C., & Liebeskind, S. (2018). Identifying Abusive Comments in Hebrew Facebook. In 2018 IEEE International Conference on the Science of Electrical Engineering in Israel (ICSEE) (pp. 1-5). IEEE. DOI: 10.1109/ICSEE.2018.8646190
  30. Lu, X., Yu, Z., Guo, B., & Zhou, X. (2014). Predicting the content dissemination trends by repost behavior modeling in mobile social networks. Journal of Network and Computer Applications, 42, 197-207. DOI: 10.1016/j.jnca.2014.01.015
  31. Ma, S., Zhang, C., & He, D. (2016). Document representation methods for clustering bilingual documents. In Proceedings of the 79th ASIS&T Annual Meeting: Creating Knowledge, Enhancing Lives through Information & Technology (p. 65). American Society for Information Science. DOI: 10.1002/pra2.2016.14505301065
  32. Maier, D., Waldherr, A., Miltner, P., Wiedemann, G., Niekler, A., Keinert, A., Pfetscha, B., Heyerc, G., Reberd, U., Ha?usslerd, T., Schmid-Petrie, H. & Adam, S. (2018). Applying LDA topic modeling in communication research: Toward a valid and reliable methodology. Communication Methods and Measures, 12(2-3), 93-118. DOI: 10.1080/19312458.2018.1430754
  33. Minh Huy (2018). ‘Overseas remittances to Vietnam continue increasing’. Sai Gon Giai Phong News Online. Available at
  34. Mol, A. (2008). The logic of care: Health and the problem of patient choice. Routledge. UK. DOI: 10.1111/j.1467-9566.2009.1168_2.x
  35. Mol, A.P., 2009. Environmental governance through information: China and Vietnam. Singapore Journal of Tropical Geography, 30(1), pp.114-129. DOI: 10.1111/j.1467-9493.2008.00358.x
  36. Monnais, L., Thompson, C. M., & Wahlberg, A. (Eds.). (2011). Southern medicine for southern people: Vietnamese medicine in the making. Cambridge Scholars Publishing. UK.
  37. Nguyen, D. (2019). Mapping knowledge domains of non-biomedical modalities: A large-scale co-word analysis of literature 1987–2017. Social Science & Medicine, 233, 1-12. DOI: 10.1016/j.socscimed.2019.05.044
  38. Nikita, M. (2016). Package ‘ldatuning’: Tuning of the Latent Dirichlet Allocation Models Parameters’. r package version 1.0.0. Available at https://CRAN.R
  39. Ortmann S. (2017) The Vietnamese Government and Institutional Reforms. In: Environmental Governance in Vietnam. Palgrave Macmillan, Cham. DOI: 10.1007/978-3-319-49760-0_3
  40. Paul, M. J., & Dredze, M. (2012). A model for mining public health topics from Twitter. Health, 11(16-16), 1.
  41. Ríssola, E. A., Bahrainian, S. A., & Crestani, F. (2019). Anticipating Depression Based on Online Social Media Behaviour. In International Conference on Flexible Query Answering Systems (pp. 278-290). Springer, Cham. DOI: 10.1007/978-3-030-27629-4_26
  42. Singer, M., Baer, H., Long, D., & Pavlotski, A. (2019). Introducing medical anthropology: a discipline in action. Rowman & Littlefield. USA.
  43. Smith, N., & Graham, T. (2019). Mapping the anti-vaccination movement on Facebook. Information, Communication & Society, 22(9), 1310-1327. DOI: 10.1080/1369118X.2017.1418406
  44. Statt, N. 2019. ‘Facebook is redesigning its core app around the two parts people actually like to use’. The Verge. Available at
  45. Thompson, C. M. (2017). The implications of gia truy?n: Family transmission texts, medical authors, and social class within the healing community in Vietnam. South East Asia Research, 25(1), 34-46. DOI: 10.1177/0967828X17690045
  46. Uzzi, B., & Spiro, J. (2005). Collaboration and creativity: The small world problem. American journal of sociology, 111(2), 447-504. DOI: 10.1086/432782
  47. Van Dijck, J., & Poell, T. (2013). Understanding social media logic. Media and communication, 1(1), 2-14. DOI: 10.17645/mac.v1i1.70
  48. Vu, T., Nguyen, D. Q., Nguyen, D. Q., Dras, M., & Johnson, M. (2018). VnCoreNLP: A Vietnamese Natural Language Processing Toolkit. arXiv preprint arXiv:1801.01331. DOI: 10.18653/v1/N18-5012
  49. Wang, W., Chen, R. R., Ou, C. X., & Ren, S. J. (2019). Media or message, which is the king in social commerce?: An empirical study of participants' intention to repost marketing messages on social media. Computers in Human Behavior, 93, 176-191. DOI: 10.1016/j.chb.2018.12.007
  50. Watts, D. J. (1999). Networks, dynamics, and the small-world phenomenon. American Journal of Sociology, 105(2), 493-527. DOI: 10.1086/210318
  51. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small world’ networks. Nature, 393(6684), 440-442. DOI: 10.1038/30918
  52. Wittel, A. (2001). Toward a network sociality. Theory, culture & society, 18(6), 51-76. DOI: 10.1177/026327601018006003
  53. Wohlgemuth, J., & Matache, M. T. (2012). Small world properties of Facebook group networks. University of Nebraska at Omaha. ProQuest Dissertations Publishing. DOI: 10.25088/ComplexSystems.23.3.197
  54. Zhao, Y. (2018). An Investigation of Autism Support Groups on Facebook. Doctoral disseration. The University of Wisconsin-Milwaukee. Available at
  55. Zuboff, S. (2019). The age of surveillance capitalism: The fight for a human future at the new frontier of power. PublicAffairs Hachette Book Group. NY, US.