Janna Joceli Omena is an invited lecturer in Digital Media and Methods at Universidade Nova de Lisboa, Portugal. She is a member of the Public Data Lab and iNOVA Media Lab, where directs the #SMARTDataSprint.
A range of scholars have criticised scholarly tendencies to focus on “easy” data such as provided by the low-hanging fruit of Twitter hashtag networks (Burgess & Bruns, 2015; Hargittai, 2020; Tromble, 2021). As a result, digital social research has been said to create a glut of studies that favour particular platforms, data forms, and networking dynamics, choices that may create ‘digital bias’ (Marres, 2017). These issues are particularly significant in visual data as the implicit nature of visuality means that platform spaces, text, and networked uses of visuals contribute to how visuals are interpreted in digital environments. In response to this issue, we present and critically reflect on new potentialities in software-based visual research on protest and politics, including: (1) rich cross-project comparisons; (2) complementing platform data with on-the-ground engagement, and (3) quali-quanti visual methods. These allow for rich data journeys through multi-modality, hybridity, comprehensive data curation, reiterative image data collection and interpretation, and the inclusion of contextual reflections in focused visual research, elements that provide meaning, texture, and context (= extra-hard data). We argue that visual digital methods consequently have the potential to provide nuanced, robust, and versatile analysis of visual data, if not necessitate these in a post-API age in which easy data access is no longer a given.
References
Akrich, M., & Latour, B. (1992). A summary of a convenient vocabulary for the semiotics of human and nonhuman assemblies. In W. Bijker & J. Law (Eds.), Shaping technology/building society: Studies in sociotechnical change (pp.259–264). Cambridge: MIT Press.
Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An Open Source Software for Exploring and Manipulating Networks. Third International AAAI Conference on Weblogs and Social Media, 361–362. https://doi.org/10.1136/qshc.2004.010033
Bennett, W. L., & Segerberg, A. (2012). The logic of connective action. Digital media and the personalisation of contentious politics. Information, Communication & Society, 15(5), 739–768. https://doi.org/10.1080/1369118X.2012.670661
Burgess, J., Angus, D., Carah, N., Andrejevic, M., Hawker, K., Lewis, K., … Li, L. (2021, November 6). Critical simulation as hybrid digital method for exploring the data operations and vernacular cultures of visual social media platforms. https://doi.org/10.31235/osf.io/2cwsu
Burgess, J., & Bruns, A. (2015). “Easy data, hard data: The politics and pragmatics of Twitter research after the computational turn”. In G. Langlois, J. Redden, & G. Elmer (Eds.), Compromised data: From social media to Big data (pp. 93–111). Bloomsbury Publishing.
Burgess, J., & Matamoros-Fernández, A. (2016). Mapping sociocultural controversies across digital media platforms: one week of #gamergate on Twitter, YouTube, and Tumblr. Communication Research and Practice, 2(1), 79-96. https://doi.org/10.1080/22041451.2016.1155338
Burgos-Thorsen, S. & Munk, A. K. (2023). Opening alternative data imaginaries in urban studies: Unfolding COVID place attachments through Instagram photos and computational visual methods. Cities, 141, 1-21. https://doi.org/10.1016/j.cities.2023.10447
Chao, J. (2021). Memespector-GUI: Graphical User Interface Client for Computer Vision APIs (Version 0.2.5) [Computer software]. https://doi.org/10.5281/zenodo.7704877
Colombo, G., Bounegru, L., & Gray, J. (2023). Visual Models for Social Media Image Analysis: Groupings, Engagement, Trends, and Rankings. International Journal Of Communication, 17, 28. https://ijoc.org/index.php/ijoc/article/view/18971
Colombo, G. (2019). Studying Digital Images in Groups: The Folder of Images. In L. Rampino & I. Mariani (Eds.), Advancements in Design Research: 11 PhD Theses on Design as We Do in Polimi (pp. 185–195). Franco Angeli Open Access.
D’Andrea, C., & Mintz, A. (2019). Studying the live cross-platform circulation of images with computer vision API: An experiment based on a sports media event. International Journal of Communication, 13. https://ijoc.org/index.php/ijoc/article/view/10423
de Zeeuw, D., & Tuters, M. (2020). The Internet is Serious Business: On the Deep Vernacular Web and its Discontents. Cultural Politics, 16(2), 214-32. https://doi.org/10.1215/17432197-8233406
Geboers, M., Van De Wiele, A., & Chad, T. (2020a). Regimes of visibility and the affective affordances of Twitter. International Journal of Cultural Studies, 23(5), 745–765. https://doi.org/10.1177/1367877920923676
Geboers, M., Stolero, N., Scuttari, A., Van Vliet, L., & Ridley, A. (2020b). Why Buttons Matter: Repurposing Facebook’s Reactions for Analysis of the Social Visual. International Journal of Communication, 14(22). https://ijoc.org/index.php/ijoc/article/view/11657
Gibbs, M.; Meese, M., Arnold, M., Nansen, B., & Carter, M. (2015). #Funeral and Instagram: Death, Social Media, and Platform Vernacular. Information Communication and Society, 18(3), 255-268. https://doi.org/10.1080/1369118X.2014.987152
Gray J., Bounegru L., Milan S., Ciuccarelli P. (2016). Ways of seeing data: Toward a critical literacy for data visualizations as research objects and research devices. In Kubitschko S., Kaun A. (Eds.), Innovative methods in media and communication research (pp. 227–251). Palgrave Macmillan.
Hargittai, E. (2020). Potential biases in Big data: Omitted voices on social media. Social Science Computer Review, 38(1), 10–24. https://doi.org/10.1177/0894439318788322
Lazer, D. M. J., Pentland, A., Watts, D. J., Aral, S., Athey, S., et al. (2020). Computational social science: Obstacles and opportunities. Science, 369,1060-1062. https://doi.org/10.1126/science.aaz8170
Karatzogianni, A. (2015). Firebrand waves of digital activism 1994-2014: The rise and spread of hacktivism and cyberconflict. Basingstoke: Springer.
Manovich, L. (2020). Cultural analytics: Visualizing cultural patterns in the era of big data. Cambridge, MA: MIT Press.
Marres, N. (2020). For a situational analytics: An interpretative methodology for the study of situations in computational settings. Big Data & Society, 7(2). https://doi.org/10.1177/2053951720949571
Marres, N., Colombo, G., Bounegru, L., Gray, J. W. Y., Gerlitz, C., & Tripp, J. (2023). Testing and Not Testing for Coronavirus on Twitter: Surfacing Testing Situations Across Scales With Interpretative Methods. Social Media + Society, 9(3). https://doi.org/10.1177/20563051231196538
Marres, N. (2017). Digital sociology: The reinvention of social research. Cambridge: Polity.
Mauri, M., Elli, T., Caviglia, G., Uboldi, G., & Azzi, M. (2017). RAWGraphs: A Visualisation Platform to Create Open Outputs. In Proceedings of the 12th Biannual Conference on Italian SIGCHI Chapter (p. 28:1–28:5). New York, NY: ACM. https://doi.org/10.1145/3125571.3125585
Nissenbaum, A., & Shifman, L. (2017). Internet Memes as Contested Cultural Capital: The Case of 4chan's /b/ Board. New Media & Society, 19(4), 483-501. https://doi.org/10.1177/1461444815609313
Niederer, S., & Colombo, G. (2019). Visual Methodologies for Networked Images: Designing Visualizations for Collaborative Research, Cross-platform Analysis, and Public Participation. Diseña, (14), 40–67. https://doi.org/10.7764/disena.14.40-67
Pearce, W., Özkula, S. M., Greene, A. K., Teeling, L., Bansard, J. S., Omena, J. J., & Rabello, E. T. (2020). Visual cross-platform analysis: Digital methods to research social media images. Information, Communication & Society, 23(2), 161-180. https://doi.org/10.1080/1369118X.2018.1486871
Omena, J. J. (2021). Digital Methods and Technicity-of-the-Mediums. From Regimes of Functioning to Digital Research. Doctoral Thesis. Available at: https://run.unl.pt/handle/10362/127961
Omena, J. J., Pilipets, E., Gobbo, B., & Chao, J. (2021). The Potentials of Google Vision API-based Networks to Study Natively Digital Images. Diseña, (19), Article.1. https://doi.org/10.7764/disena.19.Article.1
Omena, J. J., Lobo, T., Tucci, G., Bitencourt, E., de Keulenaar, E., Kerche, F., Chao, J., Liedtke, M., Li, M., Paschoal, M. L., & Lavrov, I. (2024). Quali-quanti visual methods and political bots: A cross-platform study of pro- & anti-bolsobots. Journal of Digital Social Research, 6(1), 50-73. https://doi.org/10.33621/jdsr.v6i1.215
Özkula, S. M. , Prieto-Blanco, P., Tan, X., & Mdege, N. (2024). Affordances and platformed visual misogyny: a call for feminist approaches in visual methods. Feminist Media Studies, 1-22. https://doi.org/10.1080/14680777.2024.2311355
Özkula, S. M., Reilly, P. J., & Hayes, J. (2022). Easy data, same old platforms? A systematic review of digital activism methodologies. Information, Communication & Society, 26(7), 1470–1489. https://doi.org/10.1080/1369118X.2021.2013918
Puschmann, C. (2019). An end to the wild west of social media research: a response to Axel Bruns. Information, Communication & Society, 22(11), 1582-1589. https://doi.org/10.1080/1369118X.2019.1646300
Rabello, E. T., Gommeh, E., Benedetti, A., Valerio-Ureña, G., & Metze, T. (2022). Mapping online visuals of shale gas controversy: a digital methods approach. Information, Communication & Society, 25 (15), 2264–2281. https://doi.org/10.1080/1369118X.2021.1934064
Rasband, W.S. (1997-2018). ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/
Rieder, B. (2020). Engines of Order: a mechanology of algorithmic techniques. Amsterdam University Press.
Rieder, B. and Röhle, T. (2012) Digital Methods: Five Challenges. In D. M. Berry (Ed.), Understanding Digital Humanities (London: Palgrave Macmillan), pp. 67–84.
Ricci, D., Colombo, G., Meunier, A., & Brilli, A. (2017). Designing Digital Methods to Monitor and Inform Urban Policy: The Case of Paris and its Urban Nature Initiative. International Conference on Public Policy (ICPP3). https://hal.archives-ouvertes.fr/hal-01903809
Rogers, R., & Lewthwaite, S. (2019). Teaching Digital Methods: Interview with Richard Rogers. Interviewer: S. Lewthwaite. Diseña, 14, 12–37. https://doi.org/10.7764/disena.14.12-37
Rose, G. (2016). Visual Methodologies (4th ed.). SAGE Publications.
Schneider, C.A., Rasband, W.S. & Eliceiri, K.W (2012). "NIH Image to ImageJ: 25 years of image analysis". Nature Methods, 9, 671-675.
Tromble, R. (2021). Where have all the data gone? A critical reflection on academic digital research in the post-API Age. Social Media + Society, 7(1), 1–8. https://doi.org/10.1177/2056305121988929
Venturini, T. Bounegru, T., Gray, J., & Rogers, R. (2018). A reality check (list) for digital methods. New Media & Society, 20(11), 4195-4217. https://doi.org/10.1177/1461444818769236
Venturini, T. (2024). Quali-quantitave methods. In A. Irwin & U. Felt (Eds.), Encyclopedia of Science and Technology Studies (forthcoming).
Venturini, T., Jacomy, M. and Jensen, P. (2021). What do we see when we look at networks: Visual network analysis, relational ambiguity, and force-directed layouts. Big Data & Society, 8 (1). https://doi.org/10.1177/20539517211018488